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Ising spin glasses: Corrections to finite size scaling, freezing temperatures, and critical exponen

P. O. Mari and I. A. Campbell
Laboratoire de Physique des Solides, Universite´ Paris Sud, 91405 Orsay, France

~Received 23 June 1998; revised manuscript received 1 October 1998!

We compare simulation data from different sources on two canonical three-dimensional Ising spin glasses
~ISGs!: the binomial6J near-neighbor interaction ISG and the Gaussian interaction ISG. We allow for the
possibility of corrections to finite size scaling and estimate the correction exponentw. Consistent estimates for
the critical temperaturesTg and for the critical exponents for each system are obtained. The data strongly
indicate that critical exponents in the two systems are significantly different from each other. These results thus
confirm a breakdown of standard universality rules in Ising spin glasses.@S1063-651X~99!01503-2#

PACS number~s!: 05.50.1q, 75.50.Lk, 64.60.Cn, 75.40.Cx
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I. INTRODUCTION

The values for the universal exponents at canon
second-order transitions are well established@1#; recent work
has only modified very slightly the accurate estimates for
dimension-3 exponents@2#. In contrast, for spin glass mode
accurate values of the freezing temperatureTg anda fortiori
of the critical exponents have been very difficult to estim
numerically because of the intrinsic slow dynamics close
the transition.

Large-scale dynamic simulations on the 3d Ising spin
glass~ISG! with binomial 6J near-neighbor interactions b
Ogielski @3# led to estimates ofTg and the whole set of stati
and dynamic exponents. Recently extensive simulation d
analyzed using finite size scaling have been reported on
same system@4#. The authors relied principally on the Binde
cumulant method to evaluateTg and estimated a significantl
lower value than that of Ogielski. However, a different sc
ing method@5# led to a value agreeing with the Ogiels
estimate. Simulations have also been carried out on thed
ISG with Gaussian interactions@6,5#.

We have reviewed the data in order to establish if a
when correction terms should be included in the finite s
scaling analyses, and we try to obtain a consistent ove
interpretation. Our final aim is to check our earlier statem
@5,7# that critical parameters vary between systems with
ferent sets of interactions, meaning that conventional univ
sality does not hold in ISGs.

II. SCALING RELATIONS

We will first recall scaling relations which will be used i
the analysis@8#. At a given size and temperature, the eq
librium spin glass susceptibility is related to the second m
ment of the fluctuations of the autocorrelation functionq(t)
through

xSG5Ld^q2& ~1!

(L is the linear size of the system andd is its dimension! and
its standard finite size scaling~FSS! formula is

xSG5L22h f „L1/n~T2Tg!…. ~2!
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Tg ,h, andn can be estimated from a scaling plot. Right
Tg for dimension 3 we should find

L^q2&}L2h ~3!

and therefore a linear relation on a log-log plot.
The Binder cumulant is defined by

gL5
1

2S 32
^q4&

^q2&2D . ~4!

Binder plots for fixedL should all intersect atTg and the
Binder cumulant values should follow a scaling form

gL5g„L1/n~T2Tg!…. ~5!

However, Eqs.~1!–~5! ignore possible corrections to FSS
When these are included, the expression for the spin g
susceptibility becomes

xSG5L22h f „L1/n~T2Tg!…

3@12L2wf L„L
1/n~T2Tg!…1O~L22w!# ~6!

and there is a similar expression for^q4&. At small sizes,gL
will be modified through the corrections to both^q2& and
^q4&. For the 3d Ising ferromagnet, the correction to th
scaling exponentw is 0.8760.09, while for the 3d site per-
colation problemw is 1.6260.13 @9#. High values ofw im-
ply that deviations from scaling drop rapidly asL increases;
however, it has been suggested that whenw is large, sublead-
ing terms can be expected to play a role also@9,10#. Up to
now, the exponentw has not been estimated numerically f
ISGs.

We can also obtain independent estimates ofTg , h, andz
using the method introduced by Bernardiet al. @5,7#. First, as
the ISG is quenched from an infinite temperature configu
tion to Tg , the spin glass susceptibility increases with tim
as th with @11,12#

h5
22h

z
. ~7!
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Second, if we measure the decay of the autocorrelation fu
tion q(t) for a well annealed sample atTg the initial decay
with time is ast2x with @3#

x5
d221h

2z
. ~8!

Combining these measurements at a set of test tempera
nearTg gives us a first set of effective valuesh1(T). Inde-
pendently, the equilibrium spin glass susceptibility as a fu
tion of sample sizeL at T nearTg gives us another set o
effective valuesh2(T). Consistency dictates that the trueTg
and h must correspond to the intersection point of the t
independenth(T) plots. This method allows us to estima
Tg , h, andz.

We can comment on the practical application of the
methods. First, a scaling plot forx has three free paramete
(Tg , h, andn). If the scaling is poor for a given set, the
that set can be ruled out; on the other hand, two different
may give equally good scaling so the method is not alw
discriminatory. The Binder cumulant technique should
principle lead to a clear value ofTg ; however, for the par-
ticular case of 3d ISGs, the Binder cumulant curves near t
estimatedTg lie very close together@4,6#, so any residual
statistical errors or corrections to FSS can have a dra
effect on the precise position of the crossing points betw
the curves.

Theh1(T) in the Bernardiet al.method is obtained using
large samples and so should not be subject to finite
corrections.

III. 3D BINOMIAL 6J ISG MODEL

We will now discuss the binomial case. Ising spins on
simple cubic lattice are coupled through random binom
(6J) near-neighbor interactions. Ogielski@3# carried out dy-
namic simulations on samples withL up to 64. From the
divergence of the susceptibility and relaxation time he e
matedTg51.17560.025. Bernardiet al. @5# obtained a scal-
ing value forTg in agreement with Ogielski. Kawashima an
Young @4# carried out very high quality numerical measur
ments down toT50.96 for sample sizesL from 6 to 16 and
down to T51.195 forL524. They measured the momen
of the equilibrium fluctuations of the autocorrelation fun
tion, ^q2& and^q4&. From the estimated intersection point
the raw Binder cumulant curves, they deduced a value
Tg51.1160.04. With this value ofTg in hand and the scal
ing relations, they further estimated the critical exponen
They have generously put their spin glass susceptibility d
at our disposal. We have completed their series of data w
measurements taken at the same temperatures and
smaller sizes,L53 and L54. Kawashima and Young@4#
pointed out that their data could be subject to correction
finite size scaling, as their scalings for the Binder parame
and for ^q2& did not lead to fully consistent estimate
for n.

We will proceed by steps, starting with thêq2& data
rather than the Binder cumulant. First, if we accept the
rameter set @Tg ,h,n# quoted in Ref. @4#, i.e., @1.11,
20.35,1.7#, the ^q2& data for L56 to L524 lead to the
scaling plot in Fig. 1. If we choose instead the parameter
c-
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@1.19,20.22,1.33#, consistent with@3,5#, we find equally
good scaling, Fig. 2.

If we now plot log10(L^q2&) against log10(L) at the tem-
perature 1.195 including results forL53 and 4, the data
show a bend at smallL and a straight line at largeL, Fig. 3.
This is consistent with aTg close to 1.195 together with
corrections to FSS for smaller sizes. In fact, similar do
bending can be seen at the other temperatures as well w
the data are plotted in this way. The effect is clearest aT
51.195 as this is the lowest temperature where data ex
to L524, giving a good estimate of the large size limitin
behavior. Assuming that only the leading term in the corr
tion to finite size scaling is important, we can fit the poin
with Eq. ~6! ignoring theO(L22w) term and replacing the
function f L by a constantk. The curve in Fig. 3 correspond
to h520.22 andw52.8. If we make the approximation
that, in the range of temperatures covered by the simulati
the correction factor is temperature independent~i.e., we set
the correction scaling functionf L to k everywhere as other
wise we would have too many uncontrollable free para
eters!, we can generate a set of ‘‘corrected’’^q2& values for
all the L andT:

^q2&* 5
^q2&

12kL2w
. ~9!

FIG. 1. Scaling plot of̂ q2& with Tg51.11, h520.35, andn
51.7 for the6J Ising spin glass model@4#.

FIG. 2. Same type of scaling plot as in Fig. 1, but withTg

51.19, h520.22, andn51.33.
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We can now make a new scaling plot, Fig. 4, using
corrected̂ q2&* values. With the same scaling parameter
@Tg , h, and n] as before, the new scaling plot~Fig. 4! is
now of excellent quality, implying that the analysis is se
consistent.

The large value ofw is entirely consistent with quite in
dependent series results on the6J ISG @13#. In the series
work, corrections to scaling are represented by the param
D1 , whereD15wn. The series results lead to (D1;3) in 4d
and (D1;4) in 3d ~it is expected thatD1 gets larger as the
dimension decreases below the upper critical dimens
@13,14#!. Thus in 3d, the series resultD1;4 and the presen
simulation resultwn;3.7 are entirely consistent.

From new simulations we have obtained more accu
data for the effective values of the Huse parameterh(T) as a
function of temperature in the region nearTg . Combining
theseh(T) values with the effective power-law relaxatio
exponent valuesx(T) from Ogielski’s relaxation work@3#,
we obtain a first set of effective valuesh1(T). We obtain a

FIG. 3. L^q2& versus L plot for the raw 6J ISG data @4#
~circles! with its corresponding fit~line! (h520.22 andw52.8)
taking into account the finite size scaling corrections@Eq. ~6!#. The
stars mark the ‘‘corrected’’L^q2& data. This figure clearly show
that the corrections to FSS are still present at sizes up toL58.

FIG. 4. Scaling plot of the corrected data of Fig. 2 (^q2&* ) with
Tg51.19, h520.22, andn51.33. The quality of the FSS plot ha
improved and is not degraded if we include sizesL53 and 4.
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second set ofh2(T) from the slopes of the log10(L^q2&)
against log10(L) plots at largeL ~the data of@4#!, Fig. 5. The
intersection point between the twoh(T) curves gives usTg
51.2060.01 andh520.2160.02. Thus the two indepen
dent estimates ofTg and h, from Ogielski’s dynamic data
and from the Bernardiet al. method, are in good agreemen
The ^q2& scaling of Fig. 4 is also consistent with this anal
sis.

What about the Binder cumulants? Like^q2&, ^q4& val-
ues are also subject to corrections to FSS. Figure 6 show
L2^q4& data as a function ofL again at the temperatur
1.195. The curve is a fit of the same form as for the equi
lent L^q2& plot. The fit parameters are a highL slope of 0.44
~equal to22h if we are atTg) andw52.0. We can note tha
the two fitting values ofw for ^q2& and for ^q4& are not
identical whereas scaling theory tells us that they should
the same. However, thew exponents we are quoting are on
‘‘effective’’ exponents; as was pointed out@9#, when w is
high, subleading terms cannot be ignored. We surmise
the true leading term value ofw is close to 2.8, but that the
^q4& is affected by subleading terms so the apparent valu
w appears a little different. We have used the fit curves
Figs. 3 and 6 as providing empirical size-dependent corr

FIG. 5. h1(T) ~squares! and h2(T) from @4# ~circles! versus
temperature for the6J ISG model. According to@5#, the intersec-
tion point between the twoh(T) curves gives an estimate ofTg and
h: we obtainedTg51.2060.01 andh520.2160.02. This figure
also includes another estimate ofh andTg from @3#, full diamond.

FIG. 6. Same type of plot as in Fig. 3, but with the rawL2^q4&
data@4#. Here,h520.44 andw52.0.
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tion factors for the range ofL studied. With corrected̂q4&
and ^q2& values we can generate a set of corrected Bin
cumulant values. The corrected Binder cumulant curves
intersect nearT51.19.

We are not suggesting that this is a water-tight proced
for estimating Tg accurately. The point is that the da
clearly show that there are correction terms present. A p
sible procedure for allowing for corrections modifies the a
parent ‘‘Binder’’ Tg . But because Binder plots are high
sensitive to the precise correction terms, alternative te
niques should be preferred for estimatingTg when correction
terms are present. In fact, without going into the proced
we have just outlined, a simple qualitative check on the c
rect Binder cumulant intersection point can be obtained
concentrating attention on the rawgL(T) curves forL516
andL524, Fig. 2 of Ref.@4#. As these are the largest size
the curves should be the least affected by corrections to F
Already in the raw data@4# the intersection point of the two
gL(T) curves for these two sizes was at a temperature
aboutT51.195, indicating that this temperature is close
Tg .

IV. 3D GAUSSIAN ISG MODEL

We now turn to the 3d ISG with Gaussian interactions
Early work suggestedTg50.960.1 @8#. Bernardiet al. @5#
estimatedTg50.8860.05. Recent large-scale simulations
sizes 4 to 16@6# were interpreted as showingTg50.95
60.04, n52.0, and h520.3660.06. The authors hav
kindly provided us with their susceptibility data. We ha
completed thê q2& data sets with results atL53. In the
discussion we will follow the same series of steps as for
binomial case. AnL^q2& scaling plot with the parameter se
@Tg ,n,h# given by @6# is of poor quality, Fig. 7. With the
parameter set@0.875,1.65,20.49# the quality of scaling is
much improved, Fig. 8. This suggests thatTg is near 0.88.
Direct log-log plots ofL^q2& againstL give an excellent
straight line atT50.90 over the whole range ofL, Fig. 9,
while the plots are curved for highL at temperatures abov
this value. This shows that for this system,Tg is near or
below 0.90, and that the corrections to FSS are indiscern
for ^q2&, much smaller in any case than in the binom

FIG. 7. Scaling plot of̂ q2& with Tg50.95, h520.36, andn
52.0 for the 3d Gaussian Ising spin glass model@6#.
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interaction system~compare Figs. 3 and 9!.
Now having the Marinariet al. ^q2& data up toL516 at

hand@6#, it is possible to give accurate values for the set
effective h2(T) from log10(L^q2&) against log10(L) plots.
Hence the estimates for this system from the Bernardiet al.
technique can be improved, Fig. 10. It can be seen that th
is a clear intersection point corresponding toTg ,h equal to
0.8660.02,20.5160.02. The^q2& scaling analysis and the
Bernardiet al. technique give consistent results.

Finally we can examine the Binder cumulant data. A sta
dard plot forgL(T) with the data which can be read off th
Marinari et al. plots @6# is shown in Fig. 11. The intersectio
of the curves occurs atT50.9160.04 giving a value ofTg
which is essentially consistent with theL^q2& scaling and the
Bernardiet al. method.

V. COMPARISONS AND CONCLUSIONS

We can draw a first conclusion on the technical level. F
systems like 3d ISGs where Binder cumulant plots for dif

FIG. 8. Same type of scaling plot as in Fig. 7, but with
improved set of parameters:Tg50.875, h520.49, andn51.65.

FIG. 9. Log-log plot ofL^q2& versusL for the raw Gaussian
ISG data@6#, at different temperatures close toTg . The Gaussian
ISG model exhibits no relevent corrections to FSS~compare Figs. 3
and 9!. The lines are to guide the eye.
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ferent sizes lie very close together nearTg , and are sensitive
to deviations from FSS and possibly other systematic pr
lems, estimates ofTg from Binder cumulant curve intersec
tions have to be treated with great caution. When accu
data to largeL exist, scaling plots for̂ q2& appear to be
reliable as they are less sensitive to systematic errors,
ticularly to deviations from FSS. However, a scaling collap
may not be discriminatory as three parameters are involv
The method of Bernardiet al. @5#, combining nonequilibrium
scaling, dynamic scaling, and finite size scaling, is not s
sitive to deviations from FSS and leads to precise and r
able estimates ofTg and the exponents. Once deviatio
from FSS are allowed for, the different methods appear to
consistent with each other.

Having gone through the procedure outlined above,
can summarize the conclusions concerning the correction

FIG. 10. h1(T) ~squares! and h2(T) from @6# ~circles! versus
temperature for the Gaussian ISG model. The intersection p
between the twoh(T) curves givesTg50.8660.01 and h5
20.5160.02. This figure also includes~plus symbol! the estimate
of h andTg from the ^q2& scaling plot:Tg50.87560.01 andh5
20.4960.02. The lines are to guide the eye.

FIG. 11. Binder parametergL plotted against temperature fo
sizesL54, 8, and 12 read off Marinariet al. @6# gives a clear
intersection atTg50.9160.04. The error bars forL516 being
much bigger, we have not included these points.
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FSS, the ordering temperatures, and the various critical
rameters for the canonical ISG systems with binomial a
Gaussian interactions.

We estimate the correction to the FSS scaling expon
for the binomial ISG to bew;2.8 in good agreement with
series results@13#. For the Gaussian case, deviations fro
scaling for the susceptibility are very small.

We give estimates in tabular form for the critical tempe
tures and exponents, Table I. With the values ofTg in the
table, the ratioTg~Gaussian!/Tg~binomial! is in good agree-
ment with Migdal-Kadanoff@15,16# and series@17# ratios.
There appear to be no basic inconsistencies among the
mates from the diverse numerical techniques, and the va
of Table I should be reliable. Clearly, in confirmation
conclusions drawn in@5,7#, the exponentsh, z, and perhaps
n appear to be significantly different for the two 3d ISG
systems. With the present values ofTg at hand together with
the Binder cumulant valuesgL(Tg) for the largestL in each
system@4,6#, the critical gL values are 0.6960.01 for the

FIG. 12. Scaling plots of̂q2& for both the 3d6J ISG and the
3d Gaussian ISG model. The two scaling functions are clearly
ferent.

nt

TABLE I. Estimates ofTg , h, and n for the 3d ISGs with
binomial and Gaussian interactions using different techniques~see
main body of text!.

6J ISG Tg h n

Corrected FSSa 1.1960.01 20.2260.02 1.3360.05
Bernardiet al.
method 1.2060.01 20.2160.02
Ogielski @3# 1.17560.025 20.2260.05 1.360.1

Gaussian ISG Tg h n

FSSb 0.87560.01 20.4960.02 1.6560.05

Bernardiet al.
method 0.8660.01 20.5160.02

aUsing ^q2& data from Ref.@4#.
bUsing ^q2& data from Ref.@6#.
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binomial case and 0.7860.02 for the Gaussian case. Agai
this parameter, which should be universal for a given clas
transitions, appears to change with the form of the inter
tions. Finally we can plot the scaling functions for^q2& to-
gether, Fig. 12. It can be seen that the two scaling functio
which should be identical if universality were obeyed, a
clearly different. The standard universality rules do not se
to hold for the critical exponent values of these ISG mode
ev

d

of
c-
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